





#### **Main characteristics MERGE**

- Optimization of long-term economic growth
- Intertemporal
- Nine regions, cases restrict to (weakly) Pareto-efficient
- Top-down production
- Bottom-up energy perspective
- Optimal emissions maximize discounted utility
- Abatement "where", "when" and "what" flexibility

Netherlands Environmental Assessment Agency

Co-benefits of Climate Policy – Bollen, 06-10-08



# Emission coefficients of energy technologies

|                      | Non-Ele                      | ctricity sector |                       |                                     |        |        |  |  |  |
|----------------------|------------------------------|-----------------|-----------------------|-------------------------------------|--------|--------|--|--|--|
|                      |                              | Cost            | Emissio               | ssion coefficients (global average) |        |        |  |  |  |
| Date of availability | Technology                   | Cost in 2000    | Carbon                | SO,                                 | NOx    | PM     |  |  |  |
|                      |                              | \$/GJ           | t/GJ                  | t/GĴ                                | t/GJ   | t/GJ   |  |  |  |
| Available            | Coal direct use              | 2.5             | 0.024                 | 0.34                                | 0.22   | 0.12   |  |  |  |
| Available            | Oil production               | 3.0-5.3         | 0.02                  | 0.15                                | 0.035  | 0.017  |  |  |  |
| Available            | Coal production              | 2.0-4.3         | 0.014                 | 0                                   | 0.35   | 0      |  |  |  |
| Available            | Renewable                    | 6               | 0                     | 0                                   | 0      | 0.011  |  |  |  |
| 2010                 | Carbon free                  | 14↓6            | 0                     | 0                                   | 0      | 0      |  |  |  |
|                      | Electricity sector           |                 |                       |                                     |        |        |  |  |  |
|                      |                              | Cost            | Emission coefficients |                                     |        |        |  |  |  |
| Date of availability | Technology                   | Cost in 2000    | Carbon                | SO,                                 | NOx    | PM     |  |  |  |
|                      |                              | Mills/kWh       | Bn tons/TWH           | Mt/TŴh                              | Mt/TWh | Mt/TWh |  |  |  |
| Available            | Hydroelectric and geothermal | 40              | 0                     | 0                                   | 0      | 0      |  |  |  |
| Available            | Existing nuclear             | 50              | 0                     | 0                                   | 0      | 0      |  |  |  |
| Available            | Existing gas                 | 36              | 0.14                  | 0                                   | 0.26   | 0      |  |  |  |
| Available            | Existing oil                 | 38              | 0.21                  | 1.87                                | 0.40   | 0.01   |  |  |  |
| Available            | Existing coal                | 20              | 0.25                  | 0.99                                | 0.42   | 0.01   |  |  |  |
| 2010                 | New gas                      | 13              | 0.09                  | 0                                   | 0.23   | 0      |  |  |  |
| 2020                 | Advanced gas-fired with CCS  | 30              | 0                     | 0                                   | 0      | 0      |  |  |  |
| 2010                 | New coal-fired               | 41              | 0.2                   | 0                                   | 0.35   | 0      |  |  |  |
| 2050                 | Advanced coal-fired with CCS | 56              | 0.01                  | 0.029                               | 0.01   | 0      |  |  |  |
| 2030                 | IG combined cycle with CCS   | 62              | 0.02                  | 0.04                                | 0.23   | 0      |  |  |  |
| 2010                 | Carbon free technology       | <b>100</b> ↓5   | 0                     | 0                                   | 0      | 0      |  |  |  |

Netherlands Environmental Assessment Agency

Co-benefits of Climate Policy – Bollen, 06-10-08

## Emissions in 2000 in Europe Global inventory from EDGAR/GAINS

| <b>RAINS</b> activities | MERGE indicator  | Emissions |                    |        |        |  |
|-------------------------|------------------|-----------|--------------------|--------|--------|--|
|                         |                  | Mt        |                    |        |        |  |
|                         |                  | PM10      | Gt SO <sub>2</sub> | Gt NO2 | Gt NH3 |  |
| Coal                    |                  |           | _                  |        |        |  |
| Existing power plants   | Old power plants | 0.10      | 2.48               | 1.11   | 0.00   |  |
| Direct use              | Heating          | 0.50      | 0.43               | 0.30   | 0.00   |  |
| Oil                     |                  |           |                    |        |        |  |
| Existing power plants   | Old power plants | 0.02      | 0.76               | 0.17   | 0.00   |  |
| Direct use              | Transport        | 0.54      | 1.50               | 4.58   | 0.00   |  |
| Derived products        | Heating          | 0.02      | 0.02               | 0.37   | 0.00   |  |
| Gas                     |                  |           |                    |        |        |  |
| Existing power plants   | Old power plants | 0.00      | 0.00               | 0.22   | 0.00   |  |
| Direct use              | Transport        | 0.00      | 0.00               | 1.78   | 0.00   |  |
| Derived products        | Heating          | 0.00      | 0.00               | 0.82   | 0.00   |  |
| Other                   |                  |           |                    |        |        |  |
| Prim. to sec. energy    | Total prim. En.  | 0.01      | 0.85               | 0.56   | 3.58   |  |
| Producing sectors       | BBP              | 0.33      | 0.00               | 0.00   | 0.00   |  |
| Households              | Consumption      | 0.10      | 0.00               | 0.00   | 0.00   |  |
|                         |                  | 4.04      | 0.04               | 0.04   | 0 50   |  |











#### Co-benefits are not large enough to have non-OECD join a climate regime

|                        |                                  | World | OECD | China | India |
|------------------------|----------------------------------|-------|------|-------|-------|
| Climate change window  |                                  |       |      |       |       |
| climate policy         | $CO_2$ eq mitigation (%)         | 73    | 74   | 81    | 77    |
|                        | PM-death reduction (%)           | 42    | 34   | 45    | 4(    |
|                        | GDP (%)                          | -2.2  | -0.8 | -6.4  | -3.6  |
|                        | GCC benefits (% GDP)             | 0.1   | 0.2  | 0.0   | 0.0   |
|                        | LAP benefits (% GDP)             | 1.8   | 1.4  | 4.6   | 3.5   |
|                        | benefits – GDP loss (% GDP)      | -0.2  | 0.8  | -1.8  | -0.2  |
| alternative air policy | benefits – GDP loss (% GDP)      | 1.1   | 1.0  | 2.8   | 1.8   |
|                        | climate policy – alternative air |       |      |       |       |
| Incentive power        | policy (% GDP)                   | -1.3  | -0.2 | -4.5  | -2.0  |

Netherlands Environmental Assessment Agency

**| | | | | |** 

Co-benefits of Climate Policy - Bollen, 06-10-08





### Air pollution policies -> CO2 ↓,SO2 ↓ → global warming →climate damages

|                            |                                   | World | OECD | China | India |
|----------------------------|-----------------------------------|-------|------|-------|-------|
| Air pollution window       | CO <sub>2</sub> eq mitigation (%) | 40    | 38   | 42    | 61    |
| Air policy                 | PM-death reduction (%)            | 71    | 65   | 70    | 74    |
|                            | GDP (%)                           | -2.3  | -1.0 | -6.9  | -7.5  |
|                            | GCC benefits (% GDP)              | -0.1  | -0.1 | -0.1  | 0.0   |
|                            | LAP benefits (% GDP)              | 3.2   | 2.5  | 7.3   | 6.8   |
|                            | benefits – GDP loss (% GDP)       | 0.9   | 1.6  | 0.3   | -0.8  |
| alternative climate policy | benefits – GDP loss (% GDP)       | -0.1  | 0.2  | -0.7  | -0.3  |
|                            | air policy - alternative climate  |       |      |       |       |
| Incentive power            | policy (% GDP)                    | 1.1   | 1.4  | 1.0   | -0.5  |
|                            |                                   |       |      |       |       |
|                            |                                   |       |      |       |       |
|                            |                                   |       |      |       |       |
|                            |                                   |       |      |       |       |
|                            |                                   |       |      |       |       |
|                            |                                   |       |      |       |       |
|                            | k l                               |       |      |       |       |

Netherlands Environmental Assessment Agency

Co-benefits of Climate Policy - Bollen, 06-10-08







